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Abstract: We studied the effects of image formation in a device known as Ferrocell, which consists 

of a thin film of a ferrofluid solution between two glass plates subjected to an external magnetic 

field in the presence of a light source. Following suggestions found in the literature, we compared 

the Ferrocell light scattering for some magnetic field configurations with the conical scattering of 

light by thin structures found in foams known as Plateau borders, and we discuss this type of 

scattering with the concept of diffracted rays from the Geometrical Theory of Diffraction. For cer-

tain magnetic field configurations, a Ferrocell with a point light source creates images of circles, 

parabolas, and hyperboles. We interpret the Ferrocell images as analogous to a Möbius transfor-

mation by inversion of the magnetic field. The formation of circles through this transformation is 

known as horocycles, which can be observed directly in the Ferrocell plane. 
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1. Introduction 

We can observe a curious case of directional light scattering in a Hele-Shaw cell 

filled with a ferrofluid solution known as Ferrocell as shown in Figure 1. The Ferrocell is 

subjected to a static external magnetic field, and for the specific case of ferrofluids, the 

magnetic field can alter structures formed by the agglomeration of nanoparticles that can 

scatter light [1–6]. In this way, we can have different conditions leading to diffraction, 

refraction, and reflection, for different configurations of magnetic fields, using field in-

tensity and direction as control parameters, as well as cell thickness. 

Systems similar to this one have been studied in the area of photonics in disordered 

media [7,8] for solar panels, in which diffraction patterns of polymeric wires forming 

different geometries present information on the distribution of wires. In these systems, 

effects such as Anderson localization are studied [9], where multiple scattering creates 

modes with a high level of spatial confinement, and has been reported in optical systems 

with ferrofluids. Other effects that can be explored for the case of light transport in the 

structures formed by ferrofluids when subjected to an applied magnetic field are light in 

photonic crystals [10,11], light polarization [12,13], and magnetic fluidic optical gratings 

[14,15], in which localized modes couple to transmission channels. 

The understanding of light scattering in systems with ferrofluids, such as the case of 

Ferrocell, can lead to applications in the paint industry or new types of light sources such 

as Random lasers, leading to the development of new possibilities for fundamental re-

search and the engineering of new devices [8]. Which leads to the question: what is the 

main mechanism in the light scattering in ferrofluids? For the case of ferrofluids sub-

jected to an external magnetic field interacting with light, in general, we have a classic 

light scattering caused mainly by electric dipoles in the form of micro-needles that are 

aligned to an external magnetic field. Light scattering may be beyond disordered 
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Gaussian scattering due to the fact that we have structures ordered by the magnetic field, 

such as diffraction gratings or photonic crystals leading to scattering resonances. How-

ever, some curious phenomena can be easily observed with the Ferrocell. In this article, 

we will discuss one of the concepts that most confuses some people in optics: the concept 

of diffracted rays [16–19], which is present at Ferrocell that is related to directional scat-

tering. The name itself brings an oxymoron: rays in optics are often found in reflections 

and refractions, while diffraction is a characteristic seen in waves when they are deflected 

by obstacles. When faced with this phenomenon, some people may have a cognitive 

conflict, because the concepts of wave and ray are commonly used in separate scenarios, 

being considered only as an approximation to each other, but they cannot coexist, in the 

same way, as biologists who studied the platypus for the first time, were baffled by the 

observation of features of birds and mammals in the same animal. Historically, the 

problem of diffracted rays arises when Young analyzes Huygens‘ principle and ends up 

with Joseph Keller’s Geometrical Theory of Diffraction, in which along with the concept 

of a ray of geometrical optics, we have the concept of diffracted ray governed by rules 

analogous to those of reflection and refraction, in order to determine the resultant fields. 

This theory was later extended as the Uniform Theory of Diffraction [20,21], as a method 

for solving scattering problems for small discontinuities. This is a classic differential light 

scattering problem, in which different components of electrical and magnetic moments of 

light interacting with a material create anisotropic effects in the direction of the scattered 

light. The analysis of these effects is made by comparing some characteristic factors of the 

system with the wavelength of light, such as material properties and the scale of the 

scatterers. In some cases of scattering using Keller’s theory, light is considered to slip 

around obstacles. 

 

Figure 1. Static arrangement of magnets and light pattern from a Ferrocell. Arrangement of twelve 

magnets with their respective isopotentials in (a) to demonstrate the applied magnetostatic field 

used in (b), where we have a luminous pattern obtained with a Ferrocell with the illumination of 

various colors in a circular arrangement. 

In this paper, we will compare the patterns obtained with the scattering of light by a 

plane wave of a laser passing through the Ferrocell, with patterns observed directly in the 

Ferrocell plane and associate them with the concept of diffracted rays. To do this, we will 

first discuss the rays diffracted in a well-defined optical structure, known as the Plateau 

border, and then we will report the laser scattering on Ferrocell for different magnetic 

field orientations. After that, we will make a parallel between these patterns obtained 

with the laser and patterns observed directly in the Ferrocell plane for a light source with 

a spherical wavefront. 
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2. Diffracted Rays in Plateau Borders 

A physical system that allows direct observation of diffracted rays is the scattering 

of a plane wave from a laser beam by a structure found in foams called the Plateau border 

and surface Plateau border [16–19]. The surface Plateau border is the place where a soap 

film meets a solid surface, for example, of a Plexiglass plate [17]. In this system, we have 

the simultaneous observation of reflection, refraction, and diffraction of light in a conical 

scattering. For a laser beam traveling in a plane perpendicular to the surface Plateau 

border in contact with a transparent plate of Figure 2, inclined radial 4°, we can see dif-

fraction curves occurring in the same plane of incidence as the laser, with an interference 

figure between the laser beam and its reflection on the surface Plateau border. If we make 

the laser hit the Plateau border obliquely, the diffraction lines become curved. 

 

Figure 2. An example of how we can go from diffraction to conical diffraction with diffracted rays 

using a green laser and the structure present in soap bubbles known as the Plateau border, tilting 

the angle of incidence of light φ (23°, 0°, and 20°). Using the angle θ of 4° to show the difference 

between the transmitted beam (LS) and the reflected beam (LD), therefore there is 8° between LS 

and LD. We can see that the diffraction cone also presents the reflection and refraction of light, 

which shows that we have the presence of the concept of diffracted rays. Light patterns are projec-

tions of parabolas from the conical scattering of light. 

The light scattering is done in these Plateau borders, which are confined in a trans-

parent box. This box consists of two plain parallel Plexiglas plates separated by a gap 

(19.0 × 19.0 × 2.0 cm3). The box contains air and an amount of commercial dishwashing 

liquid diluted in water (V = 114 cm3). We have used Linear Alkylbenzene Sulfonate (LAS) 

as the surfactant, with a surface tension of 25 dyne/cm, and a density of ρ = 0.95 g/cm3. 

The refractive indices of detergent solution nl = 1.333, and ng = 1.0 for the air. We create 

the Plateau border by shaking the box. The length of the Plateau border is 2.0 cm, the 

profile of its cross-section is 0.5 mm across, and the detergent film thickness is 10 μm. 

We verified that these curves are part of a conic diffraction that occurs exactly at half 

the apical angle of the cone, exactly as if it were the reflection angle of the incident ray, 

showing that we have a reflection/refraction occurring in diffraction angle, for different 

light wavelengths. 

Unlike the case of diffraction in wires, we can directly follow the reflection in this 

system, through the most intense points called laser dogs (LD). These points are projec-

tions of the reflected beam. Note that all reflection points marked by laser dogs exactly 

coincide with the circular diffraction/interference line. The general equation for any conic 

section obtained by this scattering. 
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𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 (1) 

where A, B, C, D, E, and F are constants. Using the discriminant ∆= B2 − 4AC, the profile of 

Equation (1) is an ellipse when A is different from C or B is equal to zero, or a circle if ∆ < 0 

when A is equal C, a parabola when ∆ = 0 and hyperbola when ∆ > 0. This equation rep-

resents the possible luminous patterns obtained with the cone sections with a  angle. 

In Figure 3a we have the diagram of the laser beam incident on a Plateau border 

formed where three soap films meet in a Hele-Shaw cell with the formation of the parla-

seric circle [16–19] on a screen perpendicular to the axis of the cone, which makes the 

parameter B in Equation (1) cancel out. The inset in Figure 3a shows that we are now 

looking at the projections of the cone in the plane with the red circle perpendicular to the 

axis of the cone, while the plane parallel to the axis of the cone with the green line 

showing a hyperbola applies to the case discussed in Figure 2. 

 

Figure 3. Conic light diffraction diagram showing the incidence angle i and the half apical angle of 

the light scattering cone  in (a). The relationship between the angle of incidence of light and the 

formation of the scattering cone is the identity line or line of equality, with the formation of the 

parlaseric circle on a screen placed perpendicular to the axis of the cone in (b). 

In addition to the circular diffraction pattern, the images shown in Figure 3b present 

in some light patterns straight lines of diffraction associated with the Fraunhofer diffrac-

tion, which is characteristic of triangular obstacles due to the triangular shape of a Plat-

eau border. Another important thing shown with these patterns is that while in Figure 2 

we have only one reflected ray (LD) of the laser beam (LS) characteristic of geometric 

optics being crossed by a diffraction line, for the case of the patterns in Figure 3b we can 

have two reflected rays or four rays reflected on the diffraction circle. This is due to the 

fact that each soap film is like a beam splitter while diffracting light. For the case of cir-

cular patterns, one can prove that the angle of the reflected light rays is the same angle of 

the diffracted rays given by the angle of the cone . 
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With this experiment, we can observe some important characteristics in similar op-

tical systems, as the projected patterns of the diffracted rays always cross the image of the 

light source, and also that the angles of the diffracted rays in the diffraction cone are 

identical to the reflection angles. In a previous work [6] we showed how a system with a 

grid of transparent wires can make analogous patterns with reflection and refraction of 

light, which creates patterns similar to the cat’s eye effect on gemstones. 

3. Light Scattering in Ferrofluids 

Now, we will apply these ideas of Geometrical Theory of Diffraction in the Ferrocell. 

Light scattering in ferrofluids has been debated over the last two decades, which shows 

the complexity of an interesting topic [22,23]. For example, light scattering by 

self-assembled arrays of ferrofluid micro-needles was compared to light scattering in 

cylinders [24]. Some authors suggest that the absence of spacing between fringes of dif-

fraction patterns for the case of ferrofluids indicates that the observed pattern is caused 

by multiple diffractions by a spatial grating of magnetic chains with a combination of 

diffraction and interference [25]. 

The light source used in our next experiment is a green diode laser (10 mW) with a 

wavelength of 532 nm. The laser beam width is around 1.0 mm. The ferrofluid used in the 

experiment of the diagram of Figure 4a is the EFH1 (Ferrotec) with saturation magneti-

zation of 440 G, and the ferrofluid solution prepared to be placed in Ferrocell is a solution 

with half EFH1 and half mineral oil, with 10 nm size single domain iron oxide nanopar-

ticles. The ferrofluid solution is placed between two glass plates, with each glass plate 

having a thickness variation of around 1 μm, forming a thin film with a thickness of 

around 10 μm. The response time is of the order of 200 ms, and the scattering pattern 

disappears almost instantly after removing the magnetic field. The ferrofluid is isotropic 

for very low magnetic fields, and light passes through the Ferrocell shown in Figure 4b. 

When the magnetic field is increased, we can observe different patterns of light scattering 

in Figure 4c–f depending on the intensity and orientation of the magnetic field. The 

magnetic field in the region where the laser spot hits Ferrocell is created by permanent 

magnets and has its intensity and orientation measured with a gaussmeter as is shown in 

Figure 5. For the experiment in which we use a laser beam as a light source, the magnetic 

field can be considered uniform in the region where the laser hits the Ferrocell. For ex-

periments where we use an incoherent light source, the magnetic field perpendicular to 

the Ferrocell plane is plotted on the X-Y plane intensity graphs at the bottom of Figure 5. 

The light scattering is caused by structures formed in the ferrofluid in the presence 

of the magnetic field, ranging from 200 G to 1000 G, creating some elongated structures, 

known as needle-like structures shown in Figure 4g–i. The light scattering of this array of 

linear magnetic nanoparticle chains oriented by an external magnetic field shows com-

ponents that involve both diffraction and reflection simultaneously according to the 

Geometrical Theory of Diffraction, such as the formation of luminous rings due to the 

existence of an angle between the incident light and the orientation of the magnetic field. 
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Figure 4. Diagram showing the formation of diffracted rays in Ferrocell in (a), using a laser and an 

external magnetic field. Images of the scattering pattern projected on a screen: in (b) without an 

external magnetic field, in (c) magnetic field perpendicular to the laser propagation line, in (d) a 

magnetic field inclined 60° to the laser, in (e) a field with 45° inclination, and 10° inclination of the 

magnetic field in (f). Images obtained with the microscope showing the patterns of the mi-

cro-needles for different values of the magnetic field: in (g) without magnetic field, in (h) 200 G, 

and (i) 600 G. 

 

Figure 5. The source of the magnetic field is made using neodymium super magnets, which are 

placed close to the Ferrocell. In (a) we have the diagram for measuring the magnetic field in the 

monopolar configuration using a Hall sensor, the field strength perpendicular to the Hall sensor in 

a line, and a graph of the magnet field strength distribution in space. In (b) we have the diagram for 

measuring the magnetic field perpendicular to the Hall sensor in the dipolar configuration, the 

magnetic field intensity graph for the dipolar configuration from the center of the magnet, and the 

distribution of the magnetic field in space in the dipolar configuration. 
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Increasing the angle between the incident laser beam and the magnetic field from 0° 

to 90° changes the light patterns in ferrofluids from a circle to a straight line as reported 

by some authors studying ferrofluids [24]. A very similar effect can be obtained using 

Ferrocell as shown in Figure 4, where we have the system without the magnetic field in 

Figure 4b, and with the presence of the magnetic field and changing the field orientation 

until the circle is formed in the sequence from Figure 4b–f. In the literature, we have 

found that light propagation in a system with small particles can be described by scat-

tering matrix S(θ,) [26] with additional notation described in Ref. [27], and for the gen-

eral case of an arbitrary scatterer illuminated by a plane electromagnetic wave propa-

gating along the direction perpendicular to the Ferrocell plate, the amplitudes of electric 

field E of the scattered wave are represented by: 

�⃗� ⇒ (
𝐸𝑙

𝐸𝑟
) = (

𝑆2(𝜃, ∅)

𝑆1(𝜃, ∅)
)
exp(−𝑖𝑘𝑟 + 𝑖𝑘𝑧)

𝑖𝑘𝑟
(
𝐸𝑙0

𝐸𝑟0
) (2) 

Based on the Geometrical Theory of Diffraction, the electric field EGTD has two 

components, one for the rays of geometric optics EGO and another for the diffracted rays 

ED: 

�⃗� 𝐺𝑇𝐷 = �⃗� 𝐺𝑂 + �⃗� 𝐷 (3) 

According to Keller, when the incident rays in the direction of propagation of the 

incident wave are oblique to the edge of the obstacle, the diffracted wave is conical. The 

diffracted ray and the corresponding incident ray make equal angles with the obstacle. 

Considering the formation of image is related to the intensities of these vectors, based on 

Kirchhoff’s theory of diffraction, the electric field is associated with the diffracted field ue 

and the cone of diffracted rays is giving by [2]: 

𝑢𝑒 = 𝐾𝑢𝑖𝑟
−

1
2𝑒𝑖�⃗� 𝑟 (4) 

where K is the diffraction coefficient, ui is the incident field, r is the distance between the 

Ferrocell and the screen and k = 2π/λ is the wavenumber of the incident field with the 

wavelength λ. This field creates a pattern of diffracted rays of a right circular cone [24] as 

𝑚2𝑧2 = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 (5) 

where m is the inclination of the magnetic field in the point at which the laser touches the 

Ferrocell. This cone projected in a screen can form patterns described in Equation (1). 

Compared to scattering in a cylinder, the curvature of the scattering pattern is related to a 

scattering cone that was explained by Keller as if the waves were sliding down the mi-

cro-needle walls [20,21], using the concept of diffracted rays. The formation of the scat-

tering pattern occurs due to the intersection between the screen and the scattering cone, 

which depends on the angle between the magnetic field and the direction of the incident 

light. 

As the size of scatterers is important in the Geometrical Theory of Diffraction, we 

will now explore the involved scales of micro-needles in Ferrocell. Depending on the in-

cidence of light, we can imagine the Ferrocell as a flat waveguide, containing a structure 

dependent on the orientation and intensity of the magnetic field. This structure is shown 

by forming columns of the size of tens to hundreds of micrometers as shown in  

Figure 4g–i. 

By carefully adjusting the magnetic field so that it aligns with the incident light from 

the laser beam, we can study some physical properties of the micro-needles structures 

along with the direction of the magnetic field. The image of Figure 6a shows a diffraction 

pattern with the shape of a circle around the laser dot, representing a typical Airy dif-

fraction pattern for a magnetic field perpendicular to the plane of the paper. By making 

an angle of 5° between the magnetic field and the laser beam, the scattering pattern be-

comes asymmetric, with some of the light scattered across the top of Figure 6b. Changing 

the angle between the laser and the magnetic field to 10°, in Figure 6c we have the Airy 
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pattern giving way to an image with the laser’s midpoint flanked by two local minima, 

two local maxima followed by a halo. Increasing the angle between the magnetic field 

and the laser beam to 15° in Figure 6d, the halo increases in diameter. In Figure 6e the 

angle of the magnetic field is 25°, while in Figure 6f the angle of the magnetic field is 35°, 

with the sides of the diffraction figure having a parabolic profile. In Figure 6g, with an 

angle of 50°, we have a hyperbola-shaped diffraction figure, with the center point of the 

laser beam flanked by two local minima and two local maxima, which occupy the same 

position as the disk of Airy. 

 

Figure 6. We can observe the formation of Airy diffraction patterns for the case in which we have 

the magnetic field aligned with the propagation direction of the laser beam, as shown in (a), which 

is perpendicular to the page. This pattern is related to the diameter of the micro-needles formed 

with the application of the magnetic field. The arrow on each image shows the angle between the 

laser and the magnetic field that is perpendicular to the page. By increasing the angle between the 

magnetic field and the laser beam shown in the inset of each figure, the light pattern obtained is 

similar to the case discussed for the case of parlaseric rays obtained with Plateau borders, with 5°in 

(b), 10° in (c), and 15° in (d) with the Airy diffraction image along with the diffracted ray circle at 

the same time. In (e) the angle between the laser and magnetic field is 25°, and in (f) we have a 

parabolic profile, along with the laser point with two minimum points for an angle of 35°. In the 

last light pattern in (g), we can observe only two minimums of intensity beside the central light 

point of the laser, which occupied the place of the minimum region of the Airy disk shown in (a). 

Next, to each low point are two local maximum intensity points in (g) for the angle of 50°. Fer-

rofluid images for 0° in (h), 17° in (i), 40° in (j), and 60° in (k). 

The columns or micro-needles have a characteristic size that can be measured using 

light diffraction, when we place a uniform magnetic field with the same direction as the 

light, by forming these Airy diffraction patterns, as shown in Figure 7. We observed that 

the diameters of ferrofluid micro-needles reaching up to 4.3 µm. According to some au-

thors in the field of ferrofluids [23], light scattering is essentially of an electric dipole na-

ture, while scatterers (micro-needles) are organized by a magnetostatic phenomenon. 
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Figure 7. (a) Image obtained with a microscope of the micro-needle distribution in Ferrocell for a 

magnetic field perpendicular to the plane of the plate together with the diagram for the Airy pat-

tern obtained by diffracting a 532 nm green laser. With this apparatus, we can measure the diame-

ter of micro-needles. (b) Theoretical and experimental Airy patterns obtained with Ferrocell with 

an external magnetic field of 400 G and with a field of 600 G. The average diameter d of the mi-

cro-needles is around 4.3 m. In (c), we have the intensity graph and these plots were obtained 

transforming the images in grayscale. 

How can this information help us? The most important fact here is that we know 

that a laser light point with a well-defined orientation can be mapped into a curve asso-

ciated with a conical one as a function of the magnetic field properties due to the light’s 

scattering properties. Directly applying the Geometrical Theory of Diffraction, each light 

pattern corresponds to a conical diffraction with Ferrocell intersecting the light cone, 

which is directly connected with the light ring formation in the Ferrocell. 

4. Formation of Horocycles of Light in Ferrocell 

In addition to the laser light scattering imaging case discussed earlier, we have the 

backlight imaging case shown in the diagram of Figure 8a. For this case, we can use a 

light source such as a LED or a light source projected on a light diffuser to create an ap-

proximately spherical light source. Direct observation of Ferrocell by a viewer also shows 

this transformation of a luminous point into a curve as a function of the magnetic field of 

Figure 8b. 
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Figure 8. The horocycle: diagram of the experiment to observe the luminous ring pattern is shown 

in (a). The luminous pattern obtained in the plane of the Ferrocell plate in (b) and luminous inten-

sity graph of the same pattern in (c). We see the maximum intensity for the light source, while the 

light intensity varies in the rest of the light ring. 

The difference for this case, in comparison with the previous case using a laser 

beam, is that for this type of illumination we use a light source that creates a spherical 

wavefront and the control parameter associated with pattern formation must consider 

the position of the observer. As discussed previously, the formation of the luminous 

pattern can be interpreted as a contribution of multiple reflection, refraction, diffraction, 

and interference of light, forming a complex distribution of light intensities. The intensity 

of the luminous ring obtained with Ferrocell can be seen in Figure 8c. As in the case of 

Gaussian surfaces that are chosen to explore the symmetries of a charge distribution to 

simplify the calculation of a field in electrostatic problems, by choosing certain configu-

rations of light sources, we can explore the magnetic field symmetries to predict the pat-

tern observed in Ferrocell. In this way, exploring some symmetry properties of light 

sources positioning along with the magnetic field structure, we can compose one phe-

nomenological model based on light-scattering properties that form sections of conic 

curves. For the regions close to the poles of the magnets, as it is shown in Figure 9a, we 

have the formation of internal tangent circles for a luminous configuration of the light 

sources in line. Using the same lighting arrangement, but now with a dipole magnetic 

field configuration of Figure 9c, we see the formation of internal tangent ellipses, with a 

parabolic boundary, a faded region followed by a hyperbolic boundary, where the lit re-

gion starts over. 
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Figure 9. The light pattern in (a) obtained with Ferrocell for a straight linear array of light sources 

aligned with the magnetic field lines for a monopolar configuration, which means that one of the 

magnet poles is in direct contact with the Ferrocell, forming inner tangent circles. In (b) we have 

different curves as intersection projections of a plane with a cone indicating in each one its eccen-

tricity e: the straight line (e = infinity), the hyperbola (e = 2), the parabola (e = 1), the ellipse (e = 0.5) 

and the circle (e = 0). In (c), a partial image of a light pattern on Ferrocell was obtained with the 

straight arrangement of light sources aligned with the magnetic field for the case of a bipolar con-

figuration, showing curves associated with the hyperbola, the parabola, and the ellipse. 

Considering the position of the observer, we can see that the formation of luminous 

circles usually includes the region close to one of the poles of the magnet and the light 

source. In the case of the configuration of the dipole magnetic field, we notice the for-

mation of ellipses, circles, parabolas, and hyperboles. This led us to investigate pattern 

formation with a single spherical light source in the presence of a dipole magnetic field 

configuration, changing the position of the observer. By varying the observer’s position, 

we see in Figure 10a a succession of patterns that start with a point when the observer is 

aligned with the light source and directly perpendicular to the magnetic field. As the 

observer increases its inclination with respect to the magnetic field, we see the formation 

of circles that evolve into ellipses that distort until the formation of open curves similar to 

parabolas. 
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Figure 10. Light patterns were obtained through direct observation of Ferrocell with the spherical 

light source remaining on one of the symmetry lines of the magnetic field. As was seen with laser 

light scattering, we can see the evolution of the light pattern depending on the φ angle starting with 

a point in (a) for  = 2°, passed to a circle in (b) for  = 18°, evolving into an ellipse in (c) for  = 27°, 

in (d) for  = 31°, in (e) for  = 37°, in (f) for  = 42°, changing to an open curve in (g) for  = 53°, 

giving way to a parabola in (h) for  = 69° and a more open parabola in (i) for  = 77°, as the viewer’s 

angle of view φ tilts relative to the plate. 

These patterns can be reinterpreted as the intersection of luminous conics with the plane 

defined by the Ferrocell as the diagrams shown in Figure 11 [28]. For this luminous configu-

ration in the presence of the magnetic field of a magnet, we have considered this conical sec-

tion forming an optical field with bipolar symmetry, which is a two-dimensional system of 

coordinates, which can be considered as the projections in a plane. 

 

Figure 11. Diagrams showing conic sections obtained through the intersection of a plane with 

cones, starting with an ellipse (a), passing through a parabola (b), a hyperbola in (c), and straight 

lines in (d). If we consider the cone scattering discussed above and the plane formed by Ferrocell, 

the light patterns are formed at the intersection between the scattering cone and the Ferrocell plane. 
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Using this idea, we will make an approximation, in which we can explore the topo-

logical properties of the transformation of the magnetic field into a magneto-optical pro-

jection. A fundamental property of the magnetic field is that field lines do not intersect, 

and the properties of a field are normally preserved when it is mapped to the new coor-

dinate system, so let us focus on the light patterns obtained by Ferrocell which do not 

have crossovers. From our experimental observations, the most suitable setup to achieve 

this is a direct linear array of light sources, such as a strip of LEDs. The transformations 

from the magnetic field to light images at Ferrocell bring us to the case of a mapping 

known as Möbius transformations [29,30], given by: 

𝑓(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
 (6) 

where a, b, c and d are complex constants. 

From the set of available Möbius transformations, the image formation of the inter-

nal tangent circles is directly linked to the case of complex inversion of the surface of a 

sphere projected in a plane, from the point of view of projective geometry, with the 

transformation: 

𝑓(𝑧) = 1
𝑧⁄  (7) 

The bipolar coordinate system is based in two foci, and in a Cartesian system if the 

foci are taken to lie in each pole of the magnet at (−a,0) and (a,0): 

𝑥 =
𝑎sinh 𝑣

cosh 𝑣 − cos 𝑢
, 𝑦 =

𝑎 sin 𝑢

cosh𝑣 − cos 𝑢
 (8) 

The image of z under complex inversion has new length that is the reciprocal of the 

original, and the new angle is the negative of the original presented in Figure 12. The 

coordinate v ranges from −∞ to ∞, and u ranges from 0 to 𝜋 . We may set up a 

one-to-one correspondence between the magnetic field and the optical field like the dia-

gram of Figure 12b. For example, the following identities show that curves of constant u 

and v are circles in x-y space: 

𝑥2 + (𝑦 − 𝑎 tan𝑢)2 = 𝑎2𝑐𝑠𝑐2𝑢,(𝑥 − 𝑎 coth 𝑣)2 + 𝑦2 = 𝑎2𝑐𝑠𝑐ℎ2𝑣. (9) 

We can go from a Cartesian system to a bipolar system considering the reciprocal 

relations giving the transformations of Figure 12c,d forming τ isosurfaces [31,32]: 

𝑢 =
1

2
𝑙𝑛

(𝑥 + 𝑎)2 + 𝑦2

(𝑥 − 𝑎)2 + 𝑦2
, (10) 

and 

𝜋 − 𝑣 = 2𝑎𝑟𝑐𝑡𝑎𝑛
2𝑎𝑦

𝑎2 − 𝑥2 − 𝑦2 + √(𝑎2 − 𝑥2 − 𝑦2)2 + 4𝑎2𝑦2
 (11) 

To illustrate the F transformation, let’s show the transformation of three blue circles 

through an inversion of Figure 12, creating the light blue circles: in Figure 12c, a second 

blue circle is inverted, obtaining the smaller circle within the dotted circular line that de-

fines the inversion region. Taking a second circle concentric with the first dark blue circle 

in Figure 12d, we obtain a light blue tangent circle. In Figure 12e, we have another in-

version, getting a larger circle and τ isosurfaces. 
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Figure 12. In (a), we have the diagram showing the superposition of the monopolar magnetic field 

with the diagram of the light patterns obtained for the straight array of light sources. Searching in 

the literature, we observed that the transformation F that takes the magnetic field pattern can be 

done through a Möbius transformation in which a sphere inverts the isopotentials of a polar field, 

known as a sphere inversion, as shown in (b). This F transformation is similar to the one which 

occurs when mapping between a polar coordinate system to a bipolar coordinate system. To illus-

trate the F transformation, let us show the transformation of three blue circles through an inversion, 

creating the light blue circles: in (c), a second blue circle is inverted, obtaining the smaller circle 

within the dotted circular line that defines the inversion region. Taking a second circle concentric 

with the first dark blue circle in (d), we obtain a light blue tangent circle. In (e), we have another 

inversion, getting a larger circle. 

With this information, we can consider that the patterns obtained with Ferrocell can 

be approximated for the physical case in which we have a transformation of light sources 

in a line of Figure 13a–c that undergoes a light scattering into micro-needles aligned with 

the magnetic field, and this scattering creates luminous images in the plane of the Fer-

rocell that are perpendicular to both the incident light wave and the magnetic field. In 

this way, the magnetic field is linked to the light patterns by this transformation, just as 

the reciprocal space mapping of the X-ray diffraction patterns provides information 

about the crystal structure of materials. 

 

Figure 13. A sequence of images showing the formation of circles from light sources positioned in a 

line of symmetry of the magnetic field, removing the most internal sources so that we can observe 

the internal profile of the light pattern, using the blue color from (a–c). Simulation of the light pat-

tern in (d) with light sources represented by rounded rectangles aligned with an axis of symmetry 

of the light field, forming the inner tangent circles in Figure 9a. 
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The curves represented by Equation (9) can be associated with horocycles [30–34]. A 

horocycle is a curve in hyperbolic geometry whose normal or perpendicular geodesics all 

converge asymptotically in the same direction. Simulation of a sequence of luminous 

horocycles for the polar configuration in Figure 13d, similar to the experiment obtained 

in Figure 9a. We have a comparison between the experimental case of the F transfor-

mation applied to the case of a dipolar field in Figure 14a and a simulation for this case in 

Figure 14b. 

 

Figure 14. The light pattern on Ferrocell for a dipolar field in (a) and the simulation of this field 

using a Möbius inversion approximation in (b). 

In Figure 15a,b, we show that the crossing of the light scattering lines occurs due to 

the location of the light sources for the case of monopolar configuration. This does not 

mean that the magnetic field lines that gave rise to the pattern are crossing, but that the 

crossing is only because of a choice of overlapping light sources. In Figure 15c, we pre-

sent the magnetic pattern perspective for the dipole configuration depicted in Figure 14 

for light sources forming cross lines. 

 

Figure 15. Light sources crossed configuration in the presence of a monopolar magnetic field in (a) 

and (b), we have intersecting light patterns. The perspective of the magnetic pattern for the dipolar 

configuration of Figure 14 for light sources forming crisscross lines in (c). This shows that mapping 

the magnetic field into a magneto-optical light pattern depends on the perspective of the viewer. 
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This leads us to question how conical scattering using the laser can be equivalent to 

direct observation scattering by a spherical light source in Ferrocell. A possible answer 

can be given if we consider light scattering in systems with geometric optics. If we con-

sider the case of the purely geometric optics of a light ray hitting a cylinder obliquely 

with incidence angles θi and αi, we have multiple internal γ reflections and a sequence of 

refractions with transmitted T and refracted rays R with output angles αt,r and θt,r as 

shown in the diagrams in Figure 16a, with the light rays coming out of the cylinder in an 

approximately conical shape, as we can see in Figure 16b. An experimental demonstra-

tion of this quasi-cone using a red laser and a glass cylinder can be seen in Figure 16c. 

 

Figure 16. (a) A light ray hitting a cylinder obliquely with incidence angles θi and αi, we have mul-

tiple internal γ reflections and a sequence of refractions with transmitted T and refracted rays R 

with output angles αt,r and θt,r as shown in the diagrams in (a), with the light rays coming out of the 

cylinder in an approximately conical shape with a scattering, as we can see in (b). An experimental 

demonstration of this cone can be seen in (c). 

In this case, we just have the laws of reflection and refraction of geometric optics, 

and we can use the representation of ray optics. Considering a grid of parallel cylinders 

of Figure 17a, we can observe the effect of pattern formation for a light bulb in different 

perspectives of this system in Figure 17b,c. Each cylinder of these grids acts as a conical 

scatterer for the multiple light rays coming from each lamp. The observer perceives that 

the light streak crosses the image of the light source, in this case where reflection and re-

fraction occur simultaneously. 

In this system, we have light scatterers formed by cylinders in an arrangement of 

parallel grids. In the first demonstration, the light pattern is a light streak perpendicular 

to the orientation of the scatterers, as we saw for the case of light diffraction in Figure 4c 

which occurs in the direction perpendicular to the direction of the applied magnetic field. 

In a previous work [6], we showed other types of cylindrical grids forming other 

patterns and discussed their relationship with gem optics for the Chatoyance effect. In 

Figure 17c, we have another arrangement of transparent cylinders with four lamps, with 

a perspective forming a very inclined viewing angle, showing another luminous pattern, 

with projections of conical sections in an inverted V shape. Figures. 17b,c show a version 

of geometric optics analogous to the diffraction cases of Figure 2. We can notice in this 

demonstration of Figure 17c that the lines of the light patterns intersect at some points. 

This allows us to understand that light patterns also depend on the viewer’s perspective, 

in addition to the alignment of grid elements. 

In the case of Ferrocell, these facts emphasize that light scattering patterns are 

magneto-optical patterns, affected by the magnetic field that orients an array of particles 
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in the same way as a diffraction grating, in addition to the observer’s perspective of the 

light source. 

 

Figure 17. In (a), the diagram of a grid of cylinders between two light bulbs and an observer. In (b), 

a demonstration of this optical system, with a light streak forming a pattern that passes through the 

image of the light source. In (c), a similar system with four light bulbs with a grazing angle of view, 

forming conical sections light patterns, making a multiple crossing. 

Another pattern formation comparison between a point light source and a laser 

beam is shown in Figure 18. In Figure 18c, we are presenting a pattern obtained by the 

scattering laser beam by refraction in a glass plate with a rectangular lattice and in Figure 

18d with a hexagonal lattice. In Figure 18e, we have the direct observation of the pattern 

obtained on the glass plate with the rectangular lattice of Figure 18a, placing a spherical 

light source before the glass plate, and in Figure 18f for the case of the hexagonal lattice 

pictured in Figure 18b. We can see that the structure of the image is similar for both ob-

servation modes, similar to the case of patterns obtained in Ferrocell by laser scattering 

projected onto a screen or direct observation, and consequentially, these two observation 

modes are equivalent. 

These experiments show how we can explore some of the properties of ferrofluids 

using the magneto-optical device known as a Ferrocell for direct observation of patterns 

and their connection with different concepts in optics. Other possibilities can be explored 

in different contexts in the future. For example, the formation of luminous halos in fer-

rofluids can be found in systems based on the thermal lens effects, without the applica-

tion of an external magnetic field [35], or that is possible to observe structural changes in 

the solution of ferrofluid applying an external electric field [36]. Other interesting appli-

cations involve the development of sensors [37] and new optical elements [38]. 

 

Figure 18. (a) Picture of a stamped glass plate with a rectangular pattern. (b) Picture of a stamped 

glass plate with a hexagonal pattern. In (c,d), the projections onto a screen of a laser beam are 

scattered by these two plates. In (e,f), direct observation of a point light source passing through 

each glass plate. We can see that both the projection on the screen and the direct observations form 

similar patterns. 
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5. Conclusions 

In this work, we presented a phenomenological model for the pattern formation 

observed in a thin film of ferrofluids based on the Geometrical Theory of Diffraction and 

hyperbolic geometry. To simplify our approach, we began our discussion by presenting 

light scattering experiments on foam structures known as Plateau borders and the for-

mation of the parlaseric circle in order to present the concept of diffracted rays. 

After that, we investigated the light scattering in the Ferrocell subjected to a mag-

netic field in the presence of light sources. For different orientations of the magnetic field 

with respect to light propagation, it is possible to observe different types of light scat-

tering. In one case, we can obtain Airy patterns that are related to the diameter of the 

micro-needles, or a second type of scattering, in which we have diffracted rays from a 

conical scattering. We have observed that in this system, there are structures formed by 

nanoparticles with lengths on the order of hundreds of micrometers and diameters of few 

micrometers, which interacts with an electromagnetic wave with wavelengths in the 

visible range. 

As in the case of Gaussian surfaces that are chosen to explore the symmetries of a 

charge distribution to simplify the calculation of a field in electromagnetism, by choosing 

certain configurations of light sources, we can explore the magnetic field symmetries to 

predict the pattern observed in Ferrocell, in which a light source is partially transformed 

to a luminous ring. 

We also present some experiments in geometric optics with light-scattering in cyl-

inders and stamped plates to show the connection between the conical scattering de-

scribed in the Geometrical Theory of Diffraction theory and geometric optics. 

We can interpret these patterns as conical sections formed by the conical scattering 

of light that crosses the Ferrocell plane if we orient the light source in one of the sym-

metry axes of the magnetic field. Using some concepts of hyperbolic geometry, we can 

consider light patterns as Möbius transformations of the magnetic field for certain con-

figurations of light sources. One of these patterns, a ring-shaped light pattern, is associ-

ated with the horocycle, which is an element found in hyperbolic geometry. 
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